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Abstract—Natural convection significantly affects the thermoflmid transport processes for a malerial
experiencing phase change In the present work, steady-state solutions of the convection and associated
momentum and energy transfer are computed by considering the solid, hquid. and mushy zones sim-
ultaneously Finite-volume computational techniques, including the use of non-orthogonal curvilinear
coordinates, second-order discretization. adequate number of nodal pomts, and adaptive gnd solution
method are utilized for wide ranges of Rayleigh, Prandtl, and Stefan numbers It 1s found that the size and
strength of the convection cell. as well as the location and shape of the phase boundanes are all strongly
dependent on the combination of the above controlling parameters, as well as the temperature range
governing the existence of the mushy zone A systematic presentation of the effect of those factors on the
transport characteristics 1s made to delineate the physical mechanisms responsible for the phase change
process

1. INTRODUCTION

MELTING and solidification problems are important
in material processing, including the synthetic pro-
duction of alloy and crystal. Phase change processes
necessarily proceed with temperature gradients in the
hiquid phase which can couple with the gravitational
force to produce buoyancy-induced convection. The
mteraction of convection in the melt along with the
solidification process can have a very strong effect
on the resulting structure and performance of the
matenal [1, 2] Extensive efforts have been devoted to
developing suitable physical models and com-
putational techmques to better understand the trans-
port processes in the presence of phase change In
terms of the physical models, different treatments can
be made to account for the existence of the mushy
zone between the solidus and the liquidus phases [1,
3, 4] There are also relative advantages and dis-
advantages between adopting the temperature and
the enthalpy as the primary variables in the energy
equation [4-6]. With regard to the computational
techniques. both the finite difference/finite volume [7-
10] and the finite element [11-13} formulations have
been utilized to study the sohidification problem with
the inclusion of the convection effect

In order to accurately solve the governing differ-
ential equation with the controlling paramelers in the
ranges of practical interest, the calculations are
extremely demanding in resource The wide disparity
of length scales for momentum, energy, and solute,
as well as the unknown interface location generally
requires supercomputing capacity for detailed inves-
tigations. It 1s noted that for the solidification prob-
lems, some of the major driving forces of the con-
vection effect are from the temperature and/or solute

gradients of the hquid phase These body force terms
are almost invanably treated in the explicit manner 1n
numerical computations. For large thermal or solutal
Rayleigh numbers, the body forces are dominant n
the governing equations, which can cause extreme
difficulties and prevent the numerical procedures from
converging to a stable solution

In all of the above referenced published works,
uume dependent calculations were conducted With the
mclusion of the unsteady terms in the momentum,
energy and solute transport equations, evolution of
the phase change characteristics with respect to time
can be investigated From the computational point of
view, perhaps more importantly, the unsteady terms
are usually treated in an implicit manner, either by
the backward Euler methods [9] or by the Crank-
Nicolson method [12]. The inclusion of the unsteady
terms can help stabilize the numencal stabihty by
enhancing the contrnibutions of the implicit parts
However, in virtually all previous works except that
of Christenson er al [7] and Keller and Bergman [14],
the computations were terminated before asymptot-
ically steady-state solutions were obtained due to the
lack of computing resources Hence the important
questions related to steady-state behavior of the trans-
port charactenistics in a continuous solidification/
melting process cannot be investigated Furthermore,
very few works, with the exception of Brown’s [11],
have attempted to conduct studies of the sohdifica-
tion processes by systematically varying the control-
ling parameters

The present work attempts to elucidate the steady-
state transport characteristics of the sohidification pro-
cess in a systematic way With the use of the Darcy
law 1n the momentum equations to account for the
presence of the mushy zone and with the use of the
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9
specific heat
D length of the domain

f(T) funcuon relating latent heat release and
temperature
g gravitational acceleration

Gr Grashof number
H total enthalpy

AH latent heat release

J Jacobian of inverse coordinate
transformation as defined 1n equation
(5b)

L latent heat of phase change

P pressure

Pr Prandtl number

4,41 g, geometric relations between
coordinates systems (equation (5b))

Ra  Rayleigh number

St Stefan number
T temperature
u,v  x,yvelocity components

NOMENCLATURE
A constant 1n Darcy resistance (equation U. V' contravanant velocity components along
9)) Z and 5 coordinates
C constant 1n Darcy resistance (equation v, v Cartesian coordinates

X.. VA, v, metnc coefficients of
coordinale transformation

Greek symbols
x thermal diffusivity of hquid
B thermal expansion coefficient of hiquid
/. porosity
v kinematic viscosity
¢,n curvihnear coordinates

¢ sensible enthalpy

Subscripts
C cold
H hot
3 liquidus phase
s solidus phase
& n partial derivative with respect to &, 7

Other symbol
- dimensional quantity

enthalpy formulation, a umified set of steady-state
equations governing the mass continuity, momentum,
and energy transport are solved for all phases The
controling parameters. including the Rayleigh
number, the Prandtl number, and the Stefan number
are vaned to investigate their impacts on the transport
process. The size of the mushy zone as well as 1ts
mfluence on the sohdification process 1s also studied
by varying the temperature ranges within which the
mushy zone exists

2. NUMERICAL FORMULATION

We have utihzed the two-dimensional Navier-
Stokes equations, including the mass continuily,
momentum and energy equations. with the following
treatments

(1) Boussinesq approximation for the density
variation,

(2) Darcy law modeling of the effect of the mushy
region between solid and hiquid,

(3) enthalpy formulation [4-6] instead of tem-
perature formulation for the energy equation

The enthalpy formulation alleviates the need for
expheitly tracking the phase boundaries, but intro-
duce extra source terms ansing from the release of
latent heat which can make the computation more
difficult to converge We have developed the numen-

cal methods capable of accounting for the above
described physical models in the framework of the
general curvilinear coordinates An adaptive gnd
computational technique has also been utilized to bet-
ter resolve the flow characteristics

In terms of the non-dimensionalization procedure,
the length of the whole domain, D, thermal diffusivity
of the liquid phase, &, specific heat, C,. and tem-
perature cifferences between the right (hot) and left
(cold) walls, (T\,—Tc), are used as the reference
physical quantities. Hence, the reference velocity
and enthalpy scales are, respectively, #/D and
C,(Tu—To). The set of governing equations are
given below 1n dimensionless form.

Continuity
oU ¢V
w v _,

oz T o M

u-Momentum

Vo(buy Pr{éd (1( ou iu)
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r-Momentum
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Energy equation based on senstble enthalpy (¢) and
latent heat (AH)

1oUg) 1éve) 1 i(l( é¢ 39
T Ti e Ceu\lE vy

é (1 FY SIS
i)

1
J-St

¢ é
[B_C(U'AHHE(V'H)] )

where u, v are the Cartesian velocity components
along the x- and y-directions, and U, V the con-
travanant velocity components along the ¢- and #-
directions. Their relationships are as follows

U=u,—rx,
V=ox.—uy. (5a)
and the metrics are defined as
g1 =3+
g = XX, )y,
g = xI+y!
J =Xy, N, (5b)

More details regarding the formulation 1n curvilinear
coordinates can be found in ref [15] The Rayleigh
number 1s defined, with the overbar designating the
dimensional quantities. as
ifi(Ty—Tc)D'
g = u (6)

va

and the Prandtl number 1s

Pr = N

Rl =

where ¥ and a are, respectively, kinematic viscosity
and thermal diffusivity, § the gravitational accel-
eration, f§ the thermal expansion coefficient of iquid,
and D the dimension of the square domain By com-
bining the Rayleigh and Prandtl numbers, the Gras-
hof number, Gr, emerges as

Ra

Gr=ﬁ

®

In equations (2) and (3) the Darcy law 1s invoked
by assigning the terms 4u and Av, where
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with / being the porosity which 1s equal to 1 1n hiquid,
01n sohid, and varies continuously 1n the mushy zone
between the two phases. With the pure hiquid phase.
the permeability 1s infinity and Darcy terms 1n the
momentum equations reduce to the standard form of
the Navier-Stokes formulation. The value of C- D%z
1s assigned here as 1 6 x 10°/ Pr, the same as in ref [9]
The energy equation. equation (4). 1s derived by
splitting the total enthalpy of the matenal, H. nto the

sensible enthalpy, ¢, and latent heat, AH. 1 e.
H=¢+AH 10)

Within the mushy zone, the latent heat 1s considered

as a function of temperature, T
AH = f(T) an

Here for the purpose of developing an appropriate
numenical framework, a simple linear relationship
between H and T as adopted in ref [9] 1s used

1, T>T,

T-T,
Tl_Ts

0, T<T,

f(N)= ( ) T,>T>T, (12

where T, and T, are, respectively, iquidus and sohdus
temperatures.

In equation (4), the dimensionless parameter
associated with the phase change 1s the Stefan number,
defined as
_G(Tu—To)

St 7

(13)
where L, C,, and T, and T are, respectively, latent
heat of the liquid, specific heat of the matenal. and
the boundary values of the temperature field associ-
ated with the hot and cold walls

The solution methodology [15-17] employs a semi-
implicit iterative algorithm capable of solving the
coupled equations in non-orthogonal curvilinear
coordinates. Along with the coordinate trans-
formation, the fimte volume formulation has been
adopted 1n order to accurately honor the physical
conservation laws A combined use of the Cartesian
velocity components and contravariant velocity com-
ponents is dernived 1n the numerical algorithm In the
momentum equations the Cartesian velocity com-
ponents are treated as the primary variables. In the
conlinuity (pressure correction) equation the con-
travarnant velocity components are first updated and
then the D’yakonov iteration is used to yield the cor-
responding values between the contravanant and Car-
testan velocity components in an efficient manner
This algonthm has been assessed against a wide var-
1ety of flow problems, as summanized in ref [18], and
has been found to work well 1n general

The staggered gnd system [15] 1s employed to store
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the dependent vanables. The second-order central
difference schemes are used to discretize all the terms
i the goverming equations except the convection
terms which are approximated by the second-order
upwind scheme [19] We have combined the present
numerical algorithm for solving the coupled set of
transport equations with an adaptive grid method
developed earhier [20-22] 1n order to help obtain the
convergent solutions and resolve flow structures This
method 1s based on the concept of a multiple one-
dimensional gnd adaptation procedure and redis-
tributes the mesh spacing according to the concept of
equidistribution of a weighting function. The weight-
mg function here 1s compnised of the contributions
from the smoothness and the enthalpy gradient Sub-
stantial improvements in both the accuracy and con-
vergence rate of the numerical solution have been
observed [20, 22] In the present works, 1t has been
found that with a high Rayleigh number the adaptive
gnd technique 1s essential in yielding a convergent
solution

Wide variations of the controlling parameters,
including the Rayleigh number (from 10° to 107), the
Prandtl number (from 1.49 x 10~ *to | x 10%), and the
Stefan number (from 0 2 to 2.0), have been adopted
to study their effects on the transport pattern 1n the
presence of the phase change The size of the mushy
zone has also been varied by changing the temperature
range within which 1t exists

3. RESULTS AND DISCUSSIONS

In the present work, the buoyancy-induced con-
vection 1s considered to be caused by the temperature

M -H Curen

A square 1s taken as the domain of interest As
shown in Fig 1. the boundary conditions are (1) no
shp for the velocity field on all sides. and (2) constant
wall temperature on two vertical boundaries. i.¢
T,=1(¢y=1)and T, =0 (¢ = 0). and zero nor-
mal gradient condition on two horizontal boundaries
Two sets of the values of the minimum hquidus. 7T,,
and maximum sohdus temperatures, 7.. have been
considered to investigate the impact of the size and
shape of the mushy zone on the solidification process
The values of T, and 7, are taken as either (1) 0 6 and
04, or (2) 052 and 048. That is, the tempcrature
vaniation across the mushy zone. T, — T, 1s either 0 2
or 0 04

A non-uniform 81 x 81 grid distribution
adopted as the original nodal system Based on this
grid distribution, the adapuive gnd procedure was
conducted. To 1llustrate the effect of the Ravleigh
number on the adaptive gnd distribution. Fig 2 shows
the adaptive grid systems corresponding to Pr = 10°
St=02,7T,—T,=02,and Ra = 10°-10" It1s noted
that with the original grid system. 1t 1s often difficult
to obtain a convergent steady-state solution with the
present range of parameters With the use of the
adaptive gnids, the difficulties associated with obtain-
ing steady-state solution can be partially overcome
We have computed the steady-state solutions (or both
T,—T,=0.2and 004 With smaller valuesof 7, — T,
the mushy zone 1s thinner and the slope of the sensible
enthalpy vanations between the phases becomes
higher, causing the numerical scheme more difficulty
in reaching the steady-state solution In the present
work. hundreds to thousands of iterations may be
needed. depending on the combination of the above

WS

gradient alone mentioned dimensionless parameters Both the
no slip
)
ay ~°
l g
no slip
T =0 no slip
éc(Tc) $u(Ty) = 1
Y4
x no slip
aé
Y 0

Fic 1 Schematic of boundary conditions
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FiG 2 lllustration of adaptive gnd systems for Pr = 10%, St = 02,and T, -7, =02

MicroVax 3100 and CRAY-XMP/48 computers have
been employed for conducting the computation

31.Pr=10",8t=02

Transient solutions for the case of Pr= 10",
St =02, and Ra = 10* have been reported by Voller
and Prakash [9], and by Dantzig [12] Because of the
large Pr, the corresponding Grashof number [or the
case solved 1n refs [9, 12] 1s only 10 Here we have
obtained the steady-state solutions for a wider range
of Ra than those previously employed We have stud-
1ed the solutions with Ra from 10* to 10’

311 T,-T,=02 Figures 3-5 compare the
streamlines, enthalpy contours, and phase varnations
for four different values of Ra, from 10° to 107, with
T,—T,=0.2. As the Rayleigh number increases, the
mushy zone becomes thinner in the top region and
thicker 1n the lower region The pure liquid pool
increases its width but decreases its depth as Ra
increases. The shape of the interface 1s highly affected

by the convection strength At Ra = 10", the con-
vection effect 1s weaker and the enthalpy distribution
is substantially affected by conduction. Hence the
mushy zone 1s more aligned to the vertical boundares.
The solutions are qualitatively similar to the transient
ones reported earlier [9, 12].

For Ra = 107, the convection strength 1s more than
three umes as strong as that for 10* Consequently,
the enthalpy contours are more concentrated n the
top left and lower right regions. The boundary of the
mushy zone adjacent to the pure hquidus phase 1s
highly distorted and 1s expected to affect the sol-
idification dynamics and dendriuic formation

As Ra further increases, the enthalpy contours
responsively become more concentrated and the con-
vection effect 1s more vigorous. Hence the mushy zone
in the top left region becomes thinner. The other
observable phenomenon 1s that at Ra = 10, con-
vection s effectively dampened by the mushy zone,
the convection cell largely conforms its boundary to
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Ra = 10°

Ra = 10~

FiG 3 Streamlmes of Pr=10%,7,—7,=02,and St =02

that of the mushy zone With increasing Ra. however.
the convection becomes stronger and hence 1s able to
penctrate more into the mushy zone At Ra = 10",
despite the mushy zone bemng present 1n half of the
domain. the convection cell occupies almost the whole
region

The wiggling interface of Ra = 10" appears to resuit
from the balance of convecuion and release of latent
heat. The wiggles exist onlv within a range of Ra
Similar interface characteristics have also been
observed by Chnistenson et a/ [7] under different
conditions. Both convection and latent heat release
mechanisms are highly nonhnear and influence each
other in a coupled manner The convection strength
increases as Ra increases and hence 1s able to penetrate
deeper into the mushy zone, causing the phase bound-
ary to exert less influence on the transport charac-
teristics As the Rayleigh (and Grashof) number
further increases, the interface boundary again 1s of
smoother shape The other observable phenomenon

1s that with increasing Ra, the streamfunction shifts
its peak more Loward the solid phase, eventually
depicting a double-peak distribution

312 T,—-T,=0.04 Byreducing 7,—T, from 0.2
to 004, the mushy zone becomes thinner with the
same Ra, which produces a larger sensible enthalpy
gradient between the two phases. Figure 6 shows the
phase variations of Ra = 10* and 10°, for both
T,—T,=0.2 and 0 04 Because the overall dynamic
process is nonlinear, the locations of the mushy zone
do not coincide with each other as 7, — T, changes

Figure 7 shows the enthalpy contours and stream-
lines of the corresponding cases with T, — T, = 0 04,
As T,—T. 1s reduced, the mushy zone occupies a
smaller portion of the domain and hence the size of
the liquid pool becomes larger By comparing Fig 3
and Fig. 7(b), the enthalpy contours are less con-
centrated for the cases of smaller values of 7, — T,
The streamfunctions, on the other hand, appear
relatively insensitive to the change of T, — T,
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Ra = 107

FiG6 4 Enthalpy contours of Pr = 10°, T,— T, = 0.2, and St = 0 2, contour nterval = 0 0385

32 Effect of Prandtl number

321.Pr=149x10"% 8t=02,7,—T.,=02. By
reducing the Prandtl number from 10 to 149 x 102,
the Grashof number increases by a factor of 6 7 x 10*
for the same Rayleigh number Since the controlling
parameter governing the relative dominance of the
convection vs viscous terms tn the momentum equa-
tions 15 /(Gr), the fluids of lower Prandtl number
depict much stronger non-linear charactenstics than
those of high Prandtl number This change of flud
properties causes the numerical algorithm to expeni-
ence much more difficulties in yielding the convergent
steady-state solutions With Pr=149x10-? and
St = 0.2, no solutions, by using either the first- or
second-order upwind schemes for the convection
terms. can be obtained for the Rayleigh number of
10%, which corresponds to Gr=6.7x107 Obvi-
ously the source terms associated with the phase
change increase the nonlinearity of the governing
equations and hence make the problems more difficult

to solve. For the single phase flow. steady-state solu-
tions with the identical numencal treatments as well
as by using the identical number of nodal points have
been successfully computed for the same Pr [23]
Figures 8-10 compare the solutions of Pr=
1.49%1072, Str=0.2, and T,—7, =02 for three
different Rayleigh numbers, 10°, 104, and 10° Simular
to the cases of Pr = 10", both the strength and size
of the convection eddy increase as Ra increases As
expected, with almost five orders of magmitude differ-
ence 1n Pr, the enthalpy distributions, the resulting
shapes of the convection cell, as well as the locations of
the phase boundaries, change noticeably as Pr varies
from 10* to 149 x 10~? Since the enthalpy field 1s
under much stronger conduction nfluence with
Pr=1.49x 10~ than with Pr = 10", the location of
the mushy zone 1s now closer to the middle of the
domain In this regard, it should be noted that two
competing factors are at work With the same size of
liquid pool, the lower Pr fluids tend to develop a
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liquid
solid
mushy
4 Ra = 107
Ra = 10
liquid
liquid
@ mushy solid mushy
o)
\;.
o
Ra = 106 Ra = 107

FiG 5 Phase variationsof Pr=10°,7,—T,=02,and St =02

— (Ty-Tg)=0.2
-—- (Ty-Tg)=0.04

\— (Ty-Tg)=0.2
~—= (T3-Tg)=0.04

Ra = 104 Ra = 105

F1G 6 Comparison of phase variations of Pr = 10°, St =02, and 7, — T, = 0 2 and 0 04, respectively
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max=1.95
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streamlines of
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(b) enthale contours of

Ra = 10

2553

max=8.15

streamlines of
Ra = 10

i

enthalpg contours of
Ra = 10

FIG 7 Streamlines and enthalpy contours of Pr =103, 8t =02, and T, -7, = 004

stronger convection effect for the same Ra (which
results 1n high Gr) However, extra complexitics are
introduced by phase changes; lower Pr also causes
the enthalpy contours to be less concentrated with the
same Ra, resulting 1n a smaller size of the hiquid pool
Since Gr is dependent on the size of the hquid pool to
the third power, the smaller size of the liquid pool
reduces Gr Hence, overall convection strength 1s
determined by the balance of the competing effects.
322. Pr=1,85=02,T,—T,=0.2. Figures 11-
13 show the solutions for the cases of Ra = 10*~10°
with Pr = 1 0. By combining with other cases of ident-
ical Ra, St, T, — T, but different Pr, it can be observed
that the solutions experience an evolutionary change
of characteristics as Pr varies from a smaller value
to a larger value With Pr = 107, the wiggling phase
boundary appears al Ra = 10°. As shown 1n Fig 13,
with Pr = 1, the wiggles do not appear until Ra = 10°

The magnitudes of the wiggles are also smaller for
Pr =1 than for Pr= 10" Since the length scale of
the enthalpy field is proporuonal to (Pr/Gr)~'?,
reduction of Pr causes the length scale 1n the enthalpy
field to increase Hence the enthalpy contours of lower
Pr fluids become more smoothly distnbuted, causing
the wigghng phase boundaries to disappear

33 Effect of Stefan number

The Stefan number charactenizes the relative mag-
mtude of the source term 1n the energy equation intro-
duced by the release of latent heat in the course of
solidification. The results presented so far are with
St = 0.2. Calculations have also been conducted for
St =20 with Pr=1.49x 10" ? and 10°. the solutions
are presented in the following sections.

331 Pr=149%x10"2 St=20, T,-T,=02.
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max = 1.53x10"1 max=1.36

Ra = 107 4 Ra = 104

Gr = 6.7x10 Gr = 6.7x10°
max=3.86

10°
6.7x106

Ra
Gr

Fic 8 Streamlines of Pr=149x%x10"% T,—-7T,=02,and St=02

Figure 14 compares the solunon with Pr =149 x 107,
St =2.0,and 7, — T, = 0.2 for two different Rayleigh
numbers, Ra=10° (Gr=67x10° and 10°
(Gr = 6.7x10%) As expected, the relative effect of
the Rayleigh number on the transport charactenstics
remains the same. However, by comparing the solu-
tions of St = 2.0 (Fig 14) to those of St = 02 (Figs.
8-10), one can clearly discern the impact of St on
the enthalpy as well as the convection pattern. With
higher S, the effect of the latent heat on the enthalpy
equation is reduced. Consequently, the interface
between the mushy region and the pure iquid region
becomes less distorted with the same values of Ra and

Pr. Figure 14(c) compares the effects of St on the
shape and location of the mushy zone, large impacts
have been observed With regard to the velocity field,
higher values of St cause the convection cells to shrink
1n size

332, Pr=10', Ra=10°, St=20 Figurc 15
shows the solutions with St=20, Pr=10". and
Ra = 10* Two values of 7,—T, have been tested,
namely, 0.2 and 0.04 Inspections of the enthalpy con-
tours shown 1n Figs 4 (for T,—~ T, =02, St =02),
7(b) (for T,—T,=0.04, St=02), and 15(b) (for
St = 20) reveal that higher Sr causes the enthalpy
field to depict smoother distribution An increase in
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Fic 9 Enthalpy contours of Pr=149x10"% T,—T,=0.2,and St =0 2.
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liquid
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solid
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0 Phase vanations of Pr = 149x 102 7,—T,=02,and St =02




2557

vection with phase change

Steady-state natural con

max=6.49

max=1.93

Ra = 10°
Gr = 105

Ra = 104
Gr = 104

max=10.81

Ra = 106

= 106

Gr

=02

1,T,—T,=02,and St

of Pr=

FiG 11 Streamlines



2558 W SHYY and M -H CHEN

Ra
Gr

104 Ra
104 Gr

(L[]
=
o

(V)]

106
106
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liquid
mushy
solid
Ra = 104 Ra = 102
Gr = 104 Gr = 10

Ra = 106
Gr = 106
FiG 13 Phase vanationsof Pr=1,T,—T,=0.2,and St = 0.2
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max=1.19
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(a) streamlines,

st = 2.0.

Ra = 104

(b) enthalpy contours,

St = 2.0.

Ra = 104

’
r
'
1
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(c) phase variations

Ra = 10°

FiG 14 Transport charactenstics for Pr=149x 10"2and 7, -7, =02
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max=1l.61 max=1.81

.

Tp) -~ Tg = 0.04
(b) enthalpy contours, St = 2.0.

Ty - Tg = 0.2

— St=2.0
-=~ 5t=0.2

Ty =~ Tg = 0.2 T, - Tg = 0.04

(c) phase variations, st = 2.0.

FiG 15 Transport charactenstics for Pr = 10" and Ra = 10*
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St also makes the mushy zone less distorted and move
more toward the middle of the domain These changes
of distribution 1n both the temperature field and the
mushy zone shape show corresponding influence on
the convection field as one can observe by comparing
Figs 3. 7(a), and 15(a)

4 SUMMARY AND CONCLUSION

Based on the preceding discussions and the results
presented, the following conclusions can be reached

(1) Steady-state solutions have been successfully
obtained for many different combmations of con-
trolling parameters

(2) The size and strength of the convection cell
Increase as Ra increases Higher Ra causes the mushy
zone to exhibit more distorted phase boundaries

(3) With increasing Ra, the location of peak values
of the streamfunction moves toward the solid. Eventu-
ally a double-peak distribution of the streamfunction
appears with high Ra cases for Pr = 1 and 10°,

(4) The reduction of T, — T, makes the mushy region
change location as well as thickness. The wiggling
shape of the phase boundary also disappears as 7, — T,
decreases

(5) The Prandtl number exerts a comphcated nflu-
ence on the transport pattern With fixed Ra, lower Pr
causes Gr (and the convection strength) to increase,
1t also promotes a smoother enthalpy field, which
produces a smaller hquid pool The resulting con-
vection field 1s balanced by these competing factors

(6) The Stefan number exhibits a substantial influ-
ence on the shape of the interface A lower Stefan
number, 1¢e. higher relative value of the latent heat
release. causes the phase boundary to be more dis-
lorted
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Steady-state natural convection with phase change

CONVECTION NATURELLE PERMANENTE AVEC CHANGEMENT DE PHASE

Résumé—La convection naturelle modifie significativement les mécanismes de transport pour un matériau
expénmenté avec changement de phase On a calculé les solutions permanentes de la convection et les
transferts associés de quantité de mouvement et d’énergie, en considerant simultanément les zones sohde.
hquide et mixte On utitlise pour un large domaine de nombres de Rayleigh. Prandtl et Stefan, des techmques
de volumes finis, avec coordonnées curvilignes non orthogonales, une discrétisation du second ordre, un
nombre adéquat de points nodaux et une méthode de gnlle adaptative On trouve que la taille et I'intensite
de la cellule convective, amnsi que la position et la forme des Iimites des phases sont toutes fortement
dépendantes de la combinaison des paramétres de contréle et du domaine de température qui gouverne
I'existence de la zone mixte Une présentation systématique de I'effet de ces facteurs sur les caracterisiques
du transport est faite pour dégager les mécamsmes physiques responsables du changement de phase

STATIONARE NATURLICHE KONVEKTION MIT PHASENWECHSEL

Zusammenfassung—Die naturliche Konvektion beeinfluBt die Transportvorgange beim Phasenwechsel
emnes Matenals in sigmfikanter Weise. In der vorhegenden Arbeit werden die lmpuls- und Energie-
transportgleichungen fur stauonare Konvektionsstromung unter Bericksichtigung der Feststofl-, Flus-
sigkeits- und Erweichungszone gelost Hierzu wird ein Finite-Volumina-Verfahren mit mchtorthogonalen
krummlnigen Koordinaten, emner Diskretisierung 2 Ordnung, emer ausreichenden Anzahl von
Knotenpunkten und emer angepaBten Gutterlosungsmethode verwendet. Es wird e weiter Bereich der
Rayleigh-, Prandtl- und Stefan-Zah! untersucht Es zeigt sich, daB die GroBe und Starke der
Konvektionszelle wie auch die Position und Form der Phasengrenzen stark von den oben angegebenen
Kontrollparametern und vom Temperaturbereich abhingt, durch den die Existenz der Erweichungszone
bestimmt wird Es wird der EinfluB dieser Faktoren auf die Transporteigenschaften systematisch dargestellt,
um die physikalischen Mechanismen, die far den PhasenwechselprozeB verantwortlich sind, festzulegen

CTALIMOHAPHASA ECTECTBEHHAA KOHBEKLIMA NPH ®A30BOM INPEBPAINEHHH

Ammoramms—EcTecTBCHAas XOHBCKIEA OKA3LWBACT CYIMICCTBCHROC BIIASHEE HA MPONCCCH TEMIonepeHoca
npr HaTRYEH (aloBhix npeppamenuli. B nacrosmeil paGoTe mposencHo THCICHROE MCCICAOBAHRE CTa-
MUMOHAPHONR KOHBCKLEH C Y4¢TOM ONHOBPEMEHHOrO CYIUECTBOBAHMS TBEpAOH, MBAKON B NOPACTOIl 30H.
YuceHHbIl aHATA3 BLINOIHECTCS B IOHPOKOM qHANa’oHe uces Panes, Ilpannrns m Credana meronom
KOHCYHLIX JICMEHTOB C HCNO/L3OBAHAEM HCOPTOrOHAJILHLIX KPHBOJMHCHLX KOOPAHMHAT, NACKPETH3a-
LMH BTOPOTO NOPA/Ka, 4[IeKBATHOTO THC/IA YANIOBRIX TOYeX H METOJa aaNnTHBHOH CCTKH YCTaHOBJIEHO,
9TO pa3Mep A HHTCHCHBHOCTL KOHBEKTHBHOMN sdefixn, a Taxme pacnosioxende B ¢popMa Galopuix rpaHuL
32BHCAT OT KOMOHHAIMH NECPEYHCJICHHLIX ONPEAC/IOLTHR NAPAMETPOP H TCMNCPaTYPHOrO AHANA3OHA
CYLUECTBOBAaHMA NOPACTON 30HN. [IN% BhifBJcAAN (PHEIAYECKEX MeXaHWIMOB (a30BLIX MpeBpaluecHAl B
CTaThbe OETAILHO PACCMPTPCHO BITAAHAC ITHX (axTOpOR HA XapaKTEPHCTHKH MepeHoca
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