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Abstract--Natural convection significantly affects the thermoflmd transport processes for a material 
expenencmg phase change In the present work. steady-state solutions of the convection and associated 
momentum and energy transfer are computed by considering the solid, liquid, and mushy zones sim- 
ultaneously Finite-volume computational techmques, including the use of non-orthogonal curvdlnear 
coordinates, second-order dlscretlzatlon, adequate number of nodal points, and adaptive gnd solution 
method are utilized for wide ranges of Rayle]gh, Prandtl, and Stefan numbers It is found that the size and 
strength of the convection cell, as well as the location and shape of the phase boundanes are all strongl) 
dependent on the combination of the above controlling parameters, as well as the temperature range 
governing the existence of the mushy zone A systematic presentation of the effect of those factors on the 
transport charactenst,cs Is made to delineate the physical mechanisms responsible for the phase change 

process 

1. INTRODUCTION 

MELTING and sohdlfiCatlon problems are ~mportant 
m material processing, mcludlng the synthetic pro- 
ductlon of alloy and crystal. Phase change processes 
necessarily proceed with temperature gradients in the 
Ilqmd phase which can couple with the gravitational 
force to produce buoyancy-mduced convection. The 
interaction of convection in the melt along with the 
solidification process can have a very strong effect 
on the resulting structure and performance of the 
material [1, 2] Extensive efforts have been devoted to 
developing suttable physical models and com- 
putational techniques to better understand the trans- 
port processes m the presence of phase change In 
terms of the physical models, different treatments can 
be made to account for the existence of the mushy 
zone between the sohdus and the hquldus phases [I, 
3, 4] There are also relative advantages and dis- 
advantages between adopting the temperature and 
the enthalpy as the prtmary vartables in the energy 
equation [4-6]. With regard to the computational 
techniques, both the finite difference/finite volume [7- 
10] and the finite element [11-13] formulations have 
been utdtzed to study the solldlficat|on problem with 
the inclusion of the convection effect 

In order to accurately solve the governing differ- 
ential equation with the controlling parameters in the 
ranges of practical interest, the calculations are 
extremely demanding m resource The wide disparity 
of length scales for momentum, energy, and solute, 
as well as the unknown interface location generally 
requires supercomputlng capacity for detailed lnves- 
tigahons_ It is noted that for the solidification prob- 
lems, some of the major driving forces of the con- 
vectlon effect are from the temperature and/or solute 

gradients of the hqutd phase These body force terms 
are almost mvanably treated in the exphclt manner m 
numerical computattons. For large thermal or solutal 
Rayletgh numbers, the body forces are dominant in 
the governing equations, whtch can cause extreme 
difficulties and prevent the numerxcal procedures from 
converging to a stable solution 

In all of the above referenced pubhshed works, 
ttmedependentcalculattons were conducted With the 
mcluston of the unsteady terms m the momentum, 
energy and solute transport equations, evolution of 
the phase change charactensttcs with respect to t.me 
can be investigated From the computational point of 
view, perhaps more importantly, the unsteady terms 
are usually treated m an imphctt manner, either by 
the backward Euler methods [9] or by the Crank- 
Ntcolson method [12]. The inclusion of the unsteady 
terms can help stablhze the numerical stabthty by 
enhancing the contributions of the implicit parts 
However, in virtually all previous works except that 
ofChrtstenson et al [7] and Keller and Bergman [14], 
the computattons were terminated before asymptot- 
ically steady-state solutions were obtained due to the 
lack of computing resources Hence the Important 
questions related to steady-state behavior of the trans- 
port character.stlcs in a continuous solidification/ 
melting process cannot be investigated Furthermore, 
very few works, with the exception of Brown's [I 1], 
have attempted to conduct studies of the sohd~fica- 
tton processes by systematically varying the control- 
ling parameters 

The present work attempts to eluctdate the steady- 
state transport characteristics of the sohdlficatlon pro- 
cess in a systematic way W~th the use of the Darcy 
law m the momentum equations to account for the 
presence of the mushy zone and with the use of the 
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NOMENCLATURE 

A constant in Darcy resistance (equauon 
(9)) 

C constant in Darcy resistance (equauon 
(9)) 

Cp specific heat 
D length of the domain 
J(T)  funcuon relating latent heat release and 

temperature 
9 grawtatlonal acceleration 
Gr Grashof number 
H total enthalpy 
AH latent heat release 
J Jacobmn of inverse coordinate 

transforrnaUon as defined in equation 
(Sb) 

L latent heat of phase change 
p pressure 
Pr Prandtl number 
q~, q2, q3 geometric relations between 

coordinates systems (equatmn (5b)) 
Ra Raylelgh number 
St Stefan number 
T temperature 
u, v x, y velocity components 

U. l" contravarlant velocity components along 
and r/coordinates 

~-, y Cartesian coordinates 
x:, v~,-x,,)' metnc coefficients of 

coordinate transformation 

Greek symbols 
:~ thermal dlffUSlVlty of hquld 
fl thermal expansion coefficient of liquid 
). porosity 
v kinematic viscosity 
~, 1/ curvdmear coordinates 

sensible enthalpy 

Subscnpts 
C cold 
H hot 
¢ hquidus phase 
s solidus phase 
~, r/ partml derivative with respect to ~, q 

Other symbol 
- dlmensmnal quantity 

enthalpy formulaUon, a umfied set of steady-state 
equations govermng the mass continuity, momentum, 
and energy transport are solved for all phases The 
controlhng parameters, including the Raylelgh 
number, the Prandtl number, and the Stefan number 
are vaned to investigate their ~mpacts on the transport 
process. The size of the mushy zone as well as its 
influence on the soll&ficatmn process Is also studied 
by varying the temperature ranges within which the 
mushy zone exists 

2. NUMERICAL FORMULATION 

We have utilized the two-dimensional Navler-  
Stokes equatmns, including the mass continuity, 
momentum and energy equations, w~th the following 
treatments 

(I) Bousslnesq approximation for the density 
variation, 

(2) Darcy law modeling of the effect of the mushy 
region between sohd and hquld, 

(3) enthalpy formulation [4~5] instead of tem- 
perature formulation for the energy equation 

The enthalpy formulation alleviates the need for 
explicitly tracking the phase boundaries, but intro- 
duce extra source terms arising from the release of 
latent heat which can make the computatmn more 
difficult to converge We have developed the humeri- 

cal methods capable of accounting for the above 
described physical models in the framework of the 
general curvlhnear coordinates An adaptive grid 
computational technique has also been ut.llzed to bet- 
ter resolve the flow characteristics 

In terms of the non-&menslonahzatlon procedure, 
the length of the whole domain,/3, thermal dlffUSlVlty 
of the liquid phase, ~, specific heat, d~p, and tem- 
perature &fferences between the right (hot) and left 
(cold) walls, ( ~ ' . - T c ) ,  are used as the reference 
physical quantmes. Hence, the reference velocity 
and enthalpy scales are, respectively, i//3 and 
C'p(7~H--Tc). The set of governing equations are 
gwen below m &mensmnless form. 

Contlnmty 

u-Momentum 

1 ~(Uu) 
t- 

~U ?V 
c3~- + ~ -  = 0 II) Cq 

")t 
Ou 

1 - : "  i;TJ + J 
(2) 
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v-Momentum 

1 ?(UI') 1 ~ ( V r )  - - +  
J ~ J On 

- - -  ~ ) q ' ~ - q "  

+ c ~ \ j \ - q 2 ~ + q , ~ q  

CP - x,1 ~ + R a  " Pr  " dp + Ar .  
J 

Energy equation based on sensible enthalpy (q~) and 
latent heat (AH) 

1 ~,lf~b ) l c(V~) l Vc /1  / c~ q2~X~x~ 

e { I f  edp 

1 e A H)  + a -  ( V. H)  (4) 
J .  S t  cq 

where u, v are the Cartesian velocity components 
along the x- and y-dwectlons, and U, V the con- 
travanant velocity components along the ~- and r/- 
directions Their relationships are as follows 

U = u) ~ -- r x  o 

V = vx~ - uy~ (5a) 

and the metrics are defined as 

q l = .x'~ +)',~ 

q._ = x~x .  + )'e.)', 

J = x : ) ' , , - x , ) ' . :  (5b) 

More details regarding the formulation In curvlhnear 
coordinates can be found m ref [15] The Raylelgh 
number is defined, with the overbar designating the 
dimensional quantmes, as 

,~fl(T. - tc) is' 
Ra - (6) 

and the Prandtl number ~s 

Pr = - 

where ~ and ~ are, respectively, kinematic v~scos~ty 
and thermal &ffus~vlty, # the gravitational accel- 
eration, fl the thermal expansion coefficient of liquid, 
and /3 the d,mensmn of the square domain By com- 
bining the Rayleigh and Prandtl numbers, the Gras- 
hof number, Gr, emerges as 

Ra 
Gr = - -  (8) 

Pr  

In equations (2) and (3) the Darcy law is invoked 
by assigning the terms A u  and At', where 

- d'(I - ;.)-" fi:  
A - 2~ ~ (9) 

with 2 being the porosity which is equal to I m liquid, 
0 in solid, and varies continuously in the mushy zone 
between the two phases. With the pure liquid phase. 
the permeability is infinity and Darcy terms in the 
momentum equations reduce to the standard form of 
the Navler-Stokes formulation_ The value of C'/32/~ (3) 
is assigned here as 1 6 × 103/Pr. the same as in ref [9] 

The energy equation, equation (4). is derived by 
splitting the total enthalpy of the material, H. into the 
sensible enthalpy, ~, and latent heat. A H .  i e. 

H = 4~+AH (10) 

Within the mushy zone, the latent heat is considered 
as a function of temperature, T 

A H  = f ( T )  (11) 

Here for the purpose of developing an appropriate 
numerical framework, a simple linear relatmnship 
between H and T as adopted m ref [9] is used 

!, T>~T: 

- -  , T: >i T>~ T~ (12) f ( T )  = \ r , -  T,,] 

O, T < T ~  

where T: and Ts are, respectively, liquidus and sohdus 
temperatures. 

In equation (4), the &mensmnless parameter 
associated with the phase change is the Stefan number, 
defined as 

st = C(r"  - tc) £ (13) 

where £, C e, and f'H and Tc are, respectively, latent 
heat of the hqmd, speofic heat of the material, and 
the boundary values of the temperature field assoo- 
ated with the hot and cold walls 

The solution methodology [15-17] employs a seml- 
lmphcit iterative algorithm capable of solving the 
coupled equations in non-orthogonal curwlinear 
coordinates. Along with the coordinate trans- 
formation, the fimte volume formulation has been 
adopted in order to accurately honor the physical 
conservation laws A combined use of the Cartesian 

(7) velocity components and contravariant velocity com- 
ponents is derived in the numerical algorithm In the 
momentum equations the Cartesian velocity com- 
ponents are treated as the primary variables_ In the 
contmmty (pressure correction) equaUon the con- 
travarlant velocity components are first updated and 
then the D'yakonov Reratlon is used to yield the cor- 
responding values between the contravarmnt and Car- 
teslan velocity components in an efficient manner 
This algorithm has been assessed against a wide var- 
mty of flow problems, as summarized in ref [18], and 
has been found to work well in general 

The staggered grid system [15] is employed to store 
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the dependent variables_ The second-order central 
difference schemes are used to dlscret.ze all the terms 
in the governing equations except the convecuon 
terms which are approximated by the second-order 
upwind scheme [19] We have combined the present 
numerical algorithm for solving the coupled set of  
transport equations with an adaptive grid method 
developed earlier [20~22] in order to help obtain the 
convergent soluuons and resolve flow structures Th~s 
method is based on the concept of  a mulUple one- 
dimensional grid adaptaUon procedure and redis- 
tributes the mesh spacing according to the concept of  
eqmdlstrlbutlon of  a weighting function_ The weight- 
lng function here is comprised of  the contributions 
from the smoothness and the enthalpy gradient Sub- 
stantial improvements in both the accuracy and con- 
vergence rate of  the numerical solution have been 
observed [20, 22] In the present works, it has been 
found that with a high Raylelgh number the adaptive 
grid teehmque is essential in yleldmg a convergent 
soluUon 

Wide variations of  the controlhng parameters, 
including the Raylelgh number (from 103 to 107), the 
Prandtl number (from 1_49 × 10- "- to 1 x 103), and the 
Stefan number (from 0 2 to 2.01, have been adopted 
to study their effects on the transport pattern in the 
presence of  the phase change The size of  the mushy 
zone has also been varied by changing the temperature 
range within which it exists 

3. R E S U L T S  A N D  D I S C U S S I O N S  

In the present work, the buoyancy-induced con- 
vecuon is considered to be caused by the temperature 
gradient alone 

A square is taken as the domain of interest As 
shown in Fig 1. the boundary conditions arc (1) no 
slip for the velocity field on all sides, and (2) constant 
wall temperature on two vertical boundaries, l C 
T,  = 1 (~b. = 1) and Tc = 0 (~b~ = 0), and zero nor- 
mal gradient cond]uon on two horizontal boundaries 
Two sets of the values of  the minimum llquldus, T,, 
and maximum sohdus temperatures, T,.  ha~c been 
considered to investigate the impact of  the Mzc and 
shape of  the mush.~ zone on the sohdlficatlon process 
The values of  Tr and T~ are taken as either ( I ) 0 b and 
0 4, or (2) 0 52 and 0 48. That is, the temperature 
varmUon across the mushy zone. T,  - 7",, is either 0 2 

or 0 04 
A non-uniform 81×81 grid d |s tnbut lon ~,lS 

adopted as the original nodal s2~stem Based on th~s 
grid d]str|but.on, the adaptive grid procedure ~as 
conducted_ To illustrate the effect of  the Raylelgh 
number on the adapuve grid distribution, Fig 2 shows 
the adapuve grid systems corresponding to P~ = l0 ~ 
S t  = 0 2, T / -  T~ = 0 2, and R a  = 104-10" It is noted 
that with the original grid system, ~t is often dd-ficult 
to obtain a convergent steady-state soluhon V, lth the 
present range of  parameters With the use of  the 
adapuve grids, the difficulties associated with obtain- 
ing steady-state solution can be partially overcome 
We have computed the steady-state soluuons for both 
T / -  T~ = 0.2 and 0 04 With smaller values of  L - T, ,  

the mushy zone is thinner and the slope of  the sensible 
enthalpy variations between the phases becomes 
higher, causing the numerical scheme more dJt'ficultv 
in reaching the steady-state solution In the present 
work, hundreds to thousands of  ]terat~on~ ma) be 
needed, depending on the combination of the above 
mentioned dimensionless parameters Both the 

no slip 

8~ 
• , 0 a y  

no slip 
6 c ( T c )  = 0 

) 
x no s1£p 

~6 
- o #y 

FI6 I Schemauc of boundary condltlons 

q 

no ~l~p 
~n(TH} = i 
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adaptive grid of Ra = 10 4 

; T Z Z : : Z : ~ Z _ _ _ : Z  ZZ Z : ~ : Z Z : Z Z : Z Z ± : Z Z Z 7 : : : : : ± : : 7  

S : Z  ~ 2 T 2 7  7 " . Z ~ Z - - : : 2 : 2 2 _ ~ Z 7 7 2 S ; 2 Z ~ Z 7  : : ; 7  

T i : :  - .  ~ -Z-Z  : ~ Z 2 7 L Z L S ~ Z : ~ - - ~ 7 2 ~ Z 2 7 _  ~ 7 . L  

adaptive grid of Ra = 10 5 
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:, :- 

z . z z  ; ; z : : : : : : : : -  . :  : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

adaptive grid of Ra = 10 6 adaptive grid of Ra = 10 7 

FIG 2 Illustration of adaptive grid systems for Pr = 103, St = 0 2, and T, - T, = 0 2 

MlcroVax 3100 and CRAY-XMP/48  computers have 
been employed for conducting the computat ion 

3 I _ P r =  10~, St = 0 2  
Transient solutions for the case of  Pr = 10 t , 

S t  = 0 2, and Ra  = 104 have been reported by Voller 
and Prakash [9], and by Dantzlg [12] Because of  the 
large Pr, the corresponding Grashof  number for the 
case solved in refs [9, 12] ts only 10 Here we have 
obtained the steady-state solutions for a w~der range 
of  Ra than those previously employed We have stud- 
led the solutions with Ra from 104 to l0  7 

3 1.1 T , - T ~  = 0 2 Figures 3-5 compare the 
streamlines, enthalpy contours, and phase variations 
for four different values of  Ra, from 104 to  ]0 7, with 
T , - T s  = 0.2. As the Rayleigh number increases, the 
mushy zone becomes thinner in the top region and 
thicker in the lower region The pure liqmd pool 
increases Its w~dth but decreases its depth as Ra 
increases. The shape of  the interface is highly affected 

by the convection strength At Ra = l0 a, the con- 
vect~on effect xs weaker and the enthalpy dtstnbut,on 
~s substantially affected by conduction_ Hence the 
mushy zone ts more aligned to the vertical boundaries. 
The solutions are quahtatwely s~mtlar to the transtent 
ones reported earlier [9, 12]_ 

For  Ra  = 105, the convection strength ~s more than 
three times as strong as that for 104 Consequently, 
the enthalpy contours are more concentrated m the 
top left and lower right regions. The boundary of  the 
mushy zone adjacent to the pure hqmdus phase is 
highly distorted and is expected to affect the sol- 
Idification dynamics and dendritic formation 

As Ra further increases, the enthalpy contours 
responstvely become more concentrated and the con- 
vection effect Ls more wgorous.  Hence the mushy zone 
in the top left region becomes thinner. The other 
observable phenomenon is that at Ra = 10 ~, con- 
vecUon is effectively dampened by the mushy zone,  
the convection cell largely conforms its boundary to 



2550 W SHVV and M-H CHEN 

max=l.98 
max=7.1 

Ra = 104 Ra = 105 

R a  = 1 .0  6 R a  = 1.0 7 

FIG 3 Streamlines of Pr = 10 a, ]re - T5 = 0 2, and St = 0 2 

that  of  the mushy  zone With increasing Ra. however,  
the convecuon  becomes s tronger  and hence ~s able to 
penetrate  more into the mushy zone At Ra = 10 ~, 
despite the mushy  zone being present  in hal f  of  the 
domain ,  the convect ion cell occupies a lmost  the whole 
region 

The wlgghng interface o f R a  = 10 ~ appears  to result 
from the balance of  convect ion and release of  latent 
heat. The wiggles exist only within a range of  Ra 

S~mdar interface characterist ics have also been 
observed by C h n s t e n s o n  et al [7] under  different 
condmons_ Both convect ton and latent  heat release 
mechamsms  are highly nonl inear  and  influence each 
other  m a coupled manne r  The convecUon strength 
,ncreases as Ra increases and hence ~s able to penetrate  
deeper into the mushy  zone, causing the phase  bound-  
ary to exert less influence on the t ranspor t  charac- 
teristics As the Raylelgb (and Grasho f )  n u m b e r  
fur ther  increases, the interface bounda ry  again is of  
smoother  shape The other  observable  phenomenon  

IS that  with increasing Ra, the s t reamfuncuon  shifts 
its peak more toward the sohd phase, eventually 
depicting a double-peak d . s t r lbuuon 

3 1 2 T , -  Ts = 0.04 By reducing T~ - 7", from 0.2 
to 0 04, the mushy  zone becomes th inner  with the 
same Ra, which produces  a larger sensible enthalpy 
gradient  between the two phases. Figure 6 shows the 
phase va r i auons  of  Ra = l 0  4 and 10 5, for bo th  
T e -  T~ = 0.2 and  0 04 Because the overall  dynamic  
process is nonl inear ,  the locations of  the mushy zone 
do not  coincide with each other  as T / -  Ts changes 

F~gure 7 shows the entha lpy  contours  and  stream- 
lines of  the cor responding  cases with T, -- 7", = 0 04. 
As T r - T s  is reduced, the mushy zone occupies a 
smaller por t ion  of  the domain  and hence the size of  
the liquid pool  becomes larger By compar ing  Fig 3 
and Fig. 7(b), the enthalpy contours  are less con- 
centra ted for the cases of  smaller values of  T e - T ~  
The s t reamfunct lons ,  on the other  hand,  appear  
relatively insensmve to the change of  Te - 7", 
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Ra = 10 6 

Ra = 10 4 Ra = 10 5 

f 

J 

Ra = 10 7 

FIG 4 Enthalpy contours of Pr = 10 ~, T : -  T, = 0.2, and St = 0 2, contour interval = 0 0385 

3 2 Effect o f  Prandtl  number 
3.2.1. Pr = 1 49x  10 -2 , St  = 02 ,  T ~ - T ~  = 0.2. By 

reducing the Prandtl number from 103 to 1 49 x 10 -~, 
the Grashof  number increases by a factor of  6 7 x 104 
for the same Rayle~gh number Smce the controlling 
parameter governing the relative dominance of  the 
convecUon vs viscous terms m the momentum equa- 
tions is x/(Gr), the fluids of  lower Prandtl number 
depict much stronger non-linear characteristics than 
those of  high Prandtl number Th~s change of  fluid 
properties causes the numerical algorithm to experi- 
ence much more difficulues in yielding the convergent 
steady-state solutions With P r =  1.49x10 -2 and 
St  = 0.2, no solutions, by using either the first- or 
second-order upwind schemes for the convecUon 
terms, can be obtained for the Raylelgh number of  
10 6, which corresponds to G r =  6.7x107 Obvi- 
ously the source terms associated with the phase 
change increase the nonhnearlty of  the govermng 
equations and hence make the problems more difficult 

to solve. For  the single phase flow, steady-state solu- 
tions with the identical numerical treatments as well 
as by using the identical number of  nodal points have 
been successfully computed for the same P,- [23] 

Figures 8-10 compare the soluuons of  Pr = 
1.49×10 -2 , S t = 0 . 2 ,  and T : - T , = 0 . 2  for three 
different Raylelgh numbers, 10 t, 104, and 10 -~ Similar 
to the cases of  Pr = 103, both the strength and size 
of  the convection eddy increase as Ra increases As 
expected, with almost five orders of  magnitude differ- 
ence m Pr, the enthalpy distributions, the resulting 
shapes of  the convection cell, as well as the IocaUons of  
the phase boundaries, change noticeably as Pr varies 
from 103 to 1 49x  10 -2 Since the enthalpy field is 
under much stronger conducuon influence with 
Pr = 1.49x 10 -2 than with Pr = 107, the location of  
the mushy zone is now closer to the middle of  the 
domain In this regard, ~t should be noted that two 
competing factors are at work With the same size of  
liquid pool, the lower Pr fluids tend to develop a 
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soli 
~ d 

Ra = 104 

mushy } 

R a  = 1 0  5 

liquid 

mushy 

liquid 

~ lid mushy 

Ra = 10 6 Ra = 10 7 

FIG 5 Phase vanaUons  o f P r  = 10 3, Te - T~ = 0 2, and St = 0 2 

I -Ts) =0.04 
I 

Ra = 10 4 Ra = 10 5 

FIG 6 Compar i son  of  phase var lahons  o f P r  = 103, St = 0 2, and T r -  T, = 0 2 and 0 04, respect,vely 
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max- . 
max=l.95 

(a) streamlines of streamlines of 
Ra = l04 Ra = l05 

(b) enthalp~[ contours of 
Ra = I0 ~ 

enthalp~ contours of 
Ra = i0 ~ 

FIG 7 Streamlines and enthalpy contours of Pr = 10 a, St = 02 ,  and 7": - T5 = 004  

stronger convection effect for the same Ra (which 
results in high Gr) However, extra complexities are 
introduced by phase changes; lower Pr also causes 
the enthalpy contours to be less concentrated with the 
same Ra,  resulting in a smaller size of  the liquid pool 
Since Gr is dependent on the size of  the hqmd pool to 
the third power, the smaller size of  the liquid pool 
reduces Gr Hence, overall convection strength is 
determined by the balance of  the competing effects_ 

3 2_2. Pr  = l,  S t  = 0.2, 7" : -  T~ = 0.2. Figures 1 1- 
13 show the solutions for the cases of  Ra = 104-106 
with Pr  = I 0. By combining with other cases of ident-  
tcal Ra,  St ,  7": - 7",, but different Pr,  it can  be observed  

that the solutions experience an evolutionary change 
of  characteristics as Pr  varies from a smaller value 
to a larger value With Pr = 103, the wiggling phase 
boundary appears at Ra = l05. As shown in Fsg 13, 
with Pr  = I, the wiggles do not appear until Ra = 106 

The magnitudes of  the wiggles are also smaller for 
Pr = I than for Pr = l0 ' Since the length scale of  
the enthalpy field is proport ional  to ( P r / G r ) - ' 2  

reducuon of  Pr causes the length scale m the enthalpy 
field to increase Hence the enthalpy contours of  lower 
Pr  fluids become more smoothly distributed, causing 
the wiggling phase boundaries to disappear 

3 3 Ef fect  o f  S t e fan  number  

The Stefan number characterizes the relative mag- 
mtude of  the source term m the energy equation intro- 
duced by the release of  latent heat in the course of  
sohdificaUon. The results presented so far are with 
St  = 0.2. Calculations have also been conducted for 
St  = 2 0 with Pr  = 1.49 x 10- 2 and 10 t. the solutions 
are presented m the following sections_ 

33.1. P r = l A 9 x l O  -2,  S t = 2 0 ,  T : - T s = 0 2 .  
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max = 1.53xi0 -I 
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max=l.36 

Ra = l03 
Gr = 6.7xi04 

max=3.86 

Ra = 104 
Gr = 6.7xi05 

LS 

Ra = 105 
Gr = 6.7xi06 

FIG 8 Streamlines of Pr = 1 49 x 10- 2, Te - Tl - 0 2, and St = 0 2 

Figure 14 compares  the solution with Pr = 1 49 x 10--', 
St  = 2.0, and  7"< - 7", = 0.2 for two d~fferent Raylelgh 
numbers ,  R a =  104 ( G r = 6 _ 7 × l O  ~) and 105 
(Gr = 6.7 x 10 6) AS expected, the relaUve effect of  
the Raylelgh n u m b e r  on the t r anspor t  charactenstxcs 
remains the same. However,  by compar ing  the solu- 
tions of  St = 2_0 (Fig 14) to those of  St  = 0 2 (Figs. 
8-10), one can clearly discern the impact  of  St  on 
the entha lpy  as well as the convect ion pat tern.  With 
higher St, the effect of  the latent  heat  on the enthalpy 
equa t ion  is reduced Consequent ly ,  the interface 
between the mushy  region and the pure hquld region 
becomes less &stor ted  with the same values of  Ra and 

Pr_ Figure 14(c) compares  the effects of  St on the 
shape and  locat ion of  the mushy  zone ,  large ~mpacts 
have been observed With  regard to the velocity field, 
higher  values o f  S t  cause the convect ion cells to shrink 
in size 

33.2.  P r =  10 ~, R a =  104 , S t = 2 . 0  F~gure 15 
shows the solutions with St = 20 ,  P r =  104, and 
Ra = 104 Two values of  T e -  7", have been tested, 
namely,  0.2 and  0.04 InspecUons of  the enthalpy con- 
tours shown in Figs 4 (for Te - Ts = 0 2, St = 0 2), 
7(b) (for T e - T , = O . 0 4 ,  S t = 0 2 ) ,  and  15(b) (for 
St  = 2 0) reveal that  h~gher St causes the enthalpy 
field to depict smoother  d~stnbutlon An increase in 
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Ra = 103 Ra = 104 
Gr = 6.7xi04 Gr = 6.7xi 05 

R a  = 1 0  5 
G r  = 6 . 7 x 1 0  6 

FIG 9 Enthalpy contours o f P r  = 1 4 9 x  10 -2, T : - T ,  = 0.2, and St -- 0 2. 
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FIG 10 Phase  va r i a t ions  o f P r  = 1 49 × 10 -2, T / -  T~ = 0 2, and  St  = 0 2 
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FIG 11 Streamhnes of  Pr = 1, Tr - T~ = 0 2, and St  = 0 2 
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FIG_ 12 Enthalpy contours o f  Pr  = 1, 1 " , -  7", = 0_2, and St  = 0 2 
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FIG 13 Pha~ vana t ionsofPr=  I, ~ -  ~ =0_2, and S t=  0.2 
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FIG 14 Transportcharacter]st]cs~rPr= 149x10-2and ~ - ~  = 0 2  
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St also makes  the mushy zone less distorted and move 
more toward the middle of  the domain  These changes 
of  dis t r ibut ion m bo th  the temperature  field and the 
mushy zone shape show cor respondmg influence on 
the convect ion field as one can observe by comparmg  
Figs 3, 7(a), and  15(a) 

4 S U M M A R Y  A N D  CONCLUSION 

Based on  the preceding discussions and  the results 
presented, the following conclusions can be reached 

(1) Steady-state solutmns have been successfully 
ob tamed  for many  different combina t ions  of  con- 
t rolhng parameters  

(2) The size and  s t rength of  the convectxon cell 
increase as Ra mcreases Higher  Ra causes the mushy 
zone to exhibit  more  distorted phase boundar ies  

(3) Wxth mcreasmg Ra, the location of  peak values 
of the s t reamfunct lon  moves  toward the sohd. Eventu-  
ally a double-peak dxstrlbUtlOn of the s t reamfunct lon 
appears  with high Ra cases for Pr = l and 10 3, 

(4) The reduction of  Te - T~ makes  the mushy  region 
change locat ion as well as thickness. The  wlgglmg 
shape of  the phase boundary  also disappears as Tr - Ts 
decreases 

(5) The Prandt l  n u m b e r  exerts a comphca ted  influ- 
ence on the t r anspor t  pa t te rn  With  fixed Ra, lower Pr 

causes Gr (and the convect ion s t rength)  to increase,  
tt also promotes  a smoother  enthalpy field, which 
produces a smaller liquid pool The resultmg con- 
vectlon field as balanced by these compe tmg factors 

(6) The Stefan n u m b e r  exhmbtts a substant ia l  influ- 
ence on the shape of  the mterface A lower Stefan 
number ,  t e_ higher relattve value of  the latent  heat  
release, causes the phase bounda ry  to be more dis- 
torted 
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CONVECT ION N A T U R E L L E  P E R M A N E N T E  AVEC C H A N G E M E N T  DE PHASE 

R6sum6--La convection naturelle mod]fie s~gnlfiCatlvement les m6camsmes de transport pour un matertau 
exp6nment6 avec changement  de phase On a calculi les solutions permanentes de la convection et les 
transferts assoct6s de quanttt6 de mouvement  et d'6nergle, en conslderant slmultan6ment les zones sohde. 
hqmde et mJxte On  utd~se pour un large domalne de hombres de Rayle]gh. Prandtl et Stefan, des techniques 
de volumes rims, avec coordonn6es curvdtgnes non orthogonales, une dtscr6ttsaUon du second ordre, un 
nombre ad6qaat de points nodaux et une m6thode de grille adaptatwe On trouve que la tadle et l 'mtenslte 
de la cellule convective, amsi que la posmon et la forme des hmttes des phases sont routes fortement 
d6pendantes de la combmalson des param6tres de contr61e et du domalne de temperature qm gouverne 
l'ex~stence de la zone mlxte Une  presentation syst6mat~que de I'effet de ces facteurs sur les caractenstlques 

du transport  est fmte pour degager les m6camsmes physiques responsables du changement de phase 

S T A T I O N A R E  N A T O R L I C H E  K O N V E K T I O N  MIT P H A S E N W E C H S E L  

Zumlmmenfassung--Dle naturhche Konvektlon beemfluBt die Transportvorgange belm Phasenwechsel 
emes Materials m s]gmfikanter Wetse. In der voflmgenden Arbe]t werden dm lmpuls-  und Energ]e- 
transportglemhungen for stat]onare KonvekUonss t rbmung unter Beri]ckstchttgung der Feststoff-, Flus- 
stgketts- und  Erwetchungszone gel6st Hmrzu wtrd em Fmtte-Volumina-Verfahren m]t mchtorthogonalen 
k rummhmgen  Koordmaten,  elner Otskretlsterung 2 Ordnung,  emer ausrelchenden Anzahl yon 
Knotenpunkten und elner angepal3ten Gttterlosungsmethode verwendet. Es w]rd em welter Berelch der 
Raylelgh-, Prandtl- und Stefan-Zahl untersucht  Es zetgt stch, dab dm Gr61M und Starke der 
Konvekttonszelle wm auch die Posltaon und Form der Phascngrenzen stark von den ohen angegebenen 
Kontrollparametern und vom Temperaturbcretch abhfingt, dutch den d~e Ex~stenz der Erwe~chungszone 
best tmmt wird Es wlrd der Emflul3 dtescr Faktoren aufdle Transportetgenschaften systemat~sch dargestellt, 
um d~e physlkahschen Mechamsmen,  die for den Phasenwechselprozcl3 verantworthch stud, festzulegen 
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